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The relation between normally ordered and unordered products of creation and annihilation operators is 
examined, and it is emphasized that the former correspond to counting correlations and the latter to counting 
moments. Both can be measured. I t is shown that there exists a particularly simple relation between the 
generating functions for the two kinds of products. This relation can also be obtained by semiclassical con­
siderations, which give more insight into its significance. The result provides further indication of the very 
close connection between the semiclassical and quantum-mechanical theories of optical coherence. 

1. INTRODUCTION 

TH E R E has recently been a good deal of discussion 
of the relation between the principal elements of 

the newly developing quantum theory of optical 
coherence and of the older semiclassical theories.1-11 

A close correspondence between the two has already 
been noted. 

The quantum theory makes extensive use of con­
figuration-space creation and annihilation operators 
A^(x) and Aj(x) defined by 

?/ •4i(*) = Z) / dzk exp(—ikx)ak,sik.«,j (1) 

and its Hermitian conjugate. Here ajc,8 is the annihi­
lation operator for a photon of momentum M and spin 
s, and tk,8 is the complex unit polarization vector. The 
principal elements of the theory, as it has developed so 
far, are the expectation values of normal-ordered 
products of creation and annihilation operators2,3 

Q(N,M) 
3V"3N>3N+V~3N+M Or 

= {AJX%I) '' -AjNi(xN)AjN+l(xN+d • 

• %N+M) 

''A W+M(XN+M)) , 

(2) 

which have recently been shown4-6 to be equivalent to 
the corresponding correlation functions of the classical 
theory.7 '8 I t was pointed out by Glauber2 that the 
Q(n,n) 

3V3n>3V3n (xy • -Xn,xv - -xn) are measures of the n-
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fold coincidence counting rate for photoelectric detectors 
sensitive to the j h • • • ,jn components of the radiation 
field at the space-time points xh • •, xn* As 

N=[ A; 
J 8V 

(x)Aj{x)dzx (3) 

is the number operator for photons in a volume 57 at a 
given time, it follows that 

<jV)= J GitiW(x,x)fflx. (4) 

By analogy with (4), it is at first tempting to look on 

/ • • • / • 
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as the nth moment of the number operator N. That this 
cannot be the case was recently pointed out by Jordan,12 

who showed that GjjjjX2'2)(xx,xx) — [mGjj(x'1)(x,x)'J is 
negative for certain states of the field. As a result, 
Jordan suggested that a theory of quantum optics 
ought not to be confined to normal-ordered operators. 

In the following, we wish to emphasize that normal-
ordered and alternating or unordered operators both 
correspond to "observables," but that they have a 
different physical significance. An iV-point counting 
correlation, even for coincident points, represents a 
different measurement from an Nth moment of counts. 
The first calls for the use of coincidence detectors (or 
their equivalent), while the second does not. We shall 
show, moreover, that there exists an interesting relation 
between the ordered and unordered operators, whose 
meaning is not immediately obvious. Surprising though 
it might seem, this relation was already anticipated by 
semiclassical considerations of photoelectric counts,10,13 

which lend it an immediate physical interpretation. 

2. MOMENTS AND CORRELATIONS OF COUNTS 

As G3'jtjj
(-2'2)(xiX2,xiX2) is a measure of the correlation 

between the numbers counted at x\ and Xi with some 

12 T. F. Jordan, Phys. Letters (to be published). 
» L . Mandel, Proc. Phys. Soc .(London) 74, 233 (1959). 
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detectors, it should come as no surprise that, for states 
which are eigenstates of the number operators ak,s^ak,s, 
the correlation between the counting fluctuations is 
negative. For, when the total number of particles is 
determined, the more counts are registered by one 
detector, the fewer can be registered by the other. A 
contradiction only appears to arise when the space-time 
points xi and %<i coincide. But the difficulty is apparent 
rather than real, for the result must vary smoothly 
as Xi —> #2. One would therefore expect the correlation 
£(2,2) _ [-£(1,1)̂ 2 between the counting fluctuations at 
two detectors to be negative for states which are eigen­
states of the number operator. This simple example 
shows that there is a physical distinction between the 
measurement of correlations of counts and moments 
of counts. The latter can be derived from a simple 
counting histogram obtained with one detector, whereas 
the former can only be measured with coincidence 
detectors. 

Let us explore the relation a little further. For 
simplicity we allow the two detectors registering 
photons within 5V to (almost) coincide, and observe 
that the correlation C between the fluctuations registered 
is 

C = f (A/ (X)A ; {xf)A 3 (x)Aj (*') )<Pxd*x' 

(A*(x)A3(x))dzx , (5) 

whereas the expectation value of the square of the 
number operator, according to (3), is 

m = J (A / (x)A j (x)A ; (xf)A j (x') )d*xd?xf. 

(7) 

(8) 

With the help of the equal time commutation rules 

[^(*),^0]=o=U/(*),.4t(*o], 

we readily find that 

C=(Ni)-{Nf-{N) 

= {(LNf)-{N), 

so that the correlation C is positive, negative, or zero 
according as the numbers fluctuate more than, less 
than, or as in a Poisson process. For an eigenstate of 
the N operator, {{AN)2) vanishes and C is negative. 
For the mixed state of a typical thermal radiation field, 
it is well known14 that {(AN)2) exceeds (N), so that C 
is positive. On the other hand, it is easy to see directly 
from definition (5) that there may be states for which 
C will vanish. Among these states are the "classical" 
or "coherent" eigenstates15 |{^,s#) of the Aj(x) oper­
ator used by Glauber1-3 and Sudarshan,4,5 for which the 
complex classical fields7,8 

Fy(*)=E : exp(—ikx)vic iSekiS (9) 

(6) 

with Fourier amplitudes Vk,s are the corresponding 
eigenvalues. For these states {(AN)2) = {N). The co­
herent states therefore mark a transition from positive 
to negative counting correlations. 

3. HIGHER ORDER MOMENTS AND 
CORRELATIONS 

I t should be clear from the foregoing that the count­
ing correlations are described by normal-ordered 
operators, whereas the alternating operators A^(x) 
XAj(x)A3J(x)Aj(x) • • • describe the counting moments. 
We shall now examine the higher order products of 
operators and the relation between them. 

We denote by Kn the ^th moment of the counts in some volume 67 at a given time 

Kn= ' " (A3*(xi)Aj(xi)- - -A^(xn)Aj(xn))d^xi' - -dsxn, tt=l, 2, 3, etc., (10) 

57 

and consider the relation between Kn and the correlation 

Ln= -" (Aj*(xi)- - • A/(xn)Aj(xi)- - -Aj(xn))d
zxv • -d?xn. (11) 

5V 

Clearly Ki=Lh but in general Kn9^Ln. With the help of the commutation rules (7), we may transform (10) to 

Kn= I • • • / (A/(x1)[mAj
Jt(x2)Aj(x1) + 8*(x1—x2)2'' 'ZA?(xn)Aj(xr^i) + d*(xn—xn-1)']Aj(xn))(Pxi- • -dzxn 

sv 

14 For a more general discussion of this question see Ref. 11. 
15 \{vk,s}) is to be interpreted as TL\vk,s). The states are labeled by the corresponding eigenvalues. 
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= / (A/(x)Aj(x))d*x+( i l l (Aj*(xi)A/(x2)Aj(xi)Aj(x2))d
zxidsx2 

+ { ) (Aj^xl)Aj^x2)A3(xl)Aj
1[(xs)Aj(x2)Aj(xs))d

sxld
zX2dzXz-] 

+ f ) / " " / (AJ1f(^l)Aj'fMAj(Xi)" •AjJt(Xn)Aj(Xr^l)Aj(Xn))d?Xi- • -d?Xn. 

By repeated application of the commutation rules in order to arrange the operators in normal order, together with 
definition (11), we arrive at the series 

Kn=a1^L1+a2^L2+- • •+*»<»>£„, (12) 

where 
n-l t i - l ir-2-i./fl— 1 \ fl\— 1 \ flr-2— 1> 

flr(n)=E E - - " E ( . )( . )•••( . ); r = 2,3,etc. ,and0i<»>-=l . (13) 
H—1 12=1 ir— 

- 2 - i ( n - 1 \ / i i - 1 \ / v - 2 - 1 \ 
E l )( . )•••( . 1; r = 2,3,etc.,an<Ui<»> = l . 

This expresses the general relation between the lead to it almost at once,17 and indicate its significance. 
moments Kn and the correlations Ln holding for any We outline the argument very briefly below. 
state of the radiation field. We note that K2=Li+L2, 
but that in general the relation appears to be far from 4- DISCUSSION OF THE SEMICLASSICAL 
simple. TREATMENT 

We shall see, however, that there exists an extremely If Vj{x) given by (9) is an eigenvalue of A3(x) 
simple relation between the generating functions corresponding to the state | {»*,,}), then, by expressing 

. the density operator p of the field in Sudarshan's 
M / \ j I f rr n (\A\ universal "diagonal" representation for free boson 
MK{y) i - h ^ ^ A n y {iv fieldg45 . n ^ b a g i s i | ^ s } ^ i 5 w e find 

and 

ML(y) = l+T,-Lnyn 

With the help of the explicit form for ar
{n) given by 

(13), it may be shown that 

oo ar
(n)yn (ey— l ) r 

E , (16) 
n=i n\ r\ 

so that 
oo (ey-\)r 

MK(y) = l+Z— Lr 
r=i r! 

1
T „ , 1 0 W = T r / ' # { * , , . ) [ dSxP({vk,s})\{vk,s}) 

-Lny
n. (15) J Jsv 

X({v,c,s}\A;(x)Ai(x) 

= f<P{v>...}[ <Px pdvt^V/HdVjix) 
J J 8V 

= ( ( / F ' * W 7 > ( a ? ) ^ ) ) ' ( 1 8 ) 

where the double angular brackets are to be interpreted 
as an ensemble average, in the sense that P({VJC,S}) is a 

= M L ( ^ - 1 ) . (17) generalized weighting or "probability" function.5 This 
relation suggests that, if the field is to be described 

As this result holds for any state of the field, we may classically, one might look on 
also look on (17) as an equation connecting the operators 
themselves, rather than their expectation values.16 I ts TJ= I V•*( )V ( )ds (10/1 
significance is not at all obvious at this stage. J 3 3 

However, it is interesting to note that this mysteri­
ously simple relation between MR and ML has already as the expectation value of the number of counts for a 
been derived from semiclassical considerations13,10 which single typical member of the ensemble of classical 

17 It should be noted that in Refs. 13 and 10, the moments refer 
16 This relation can also be obtained directly, without explicit to counts registered by a detector in a given time interval, whereas 

use of the expression for ar
{n). I am indebted to Dr. C. L. Mehta (3) refers to numbers in a given volume. However, for plane light 

for a particularly simple proof. Operators of the same form have waves striking a detector these numbers obviously correspond 
also been used by J. Schwinger, J. Math. Phys. 2, 407 (1961). directly. 
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fields. This, in turn, leads one to expect that the proba­
bility p(r) of counting r photons in 57 will be given by a 
Poisson distribution with parameter U, which is then 
to be averaged over the ensemble of U. Thus, 

M = ( ( — e * p ( - £ / ) ) ) . (20) 

Further details of the argument leading to (20) are 
given in Refs. 10 and 11. 

I t will now be seen that the nth. moment of r, i.e., 
of the counts, corresponds to the Kn denned quantum 
mechanically by (10), whereas the n\h moment of U, 
i.e., of the classical integrated intensity, corresponds 
to the quantum correlation Ln given by (11). The 
moment-generating function for r is given by 

00 

Mr(y)=lLexp(ry)p(r)] 
r=0 

I. INTRODUCTION 

TH E existence of gravitational radiation was pre­
dicted by Einstein1'2 shortly after he formulated 

his general theory of relativity. Systems of moving 
masses should emit gravitational waves in analogy with 
the emission of electromagnetic waves by a system of 
moving charges. Early attempts to calculate the energy 
in these waves were based on the use of a pseudostress-
energy tensor for the evaluation of the energy flux. One 
disadvantage of this method is that one can always 
choose a coordinate system in which the energy flux 
vanishes.3 This led to much scepticism about the reality 
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gravitational radiation and their objections, the reader is referred 
to the review article by F. A. E. Pirani, in Gravitation: An Intro­
duction to Current Research, edited by L. Witten (John Wiley & 
Sons, Inc., New York, 1962), Chap. 6. 

and from (20), and with the help of the well-known 
properties of the Poisson distribution, we arrive at 

Mr(y) = ((exp£U(e«-im 

= Mu(e"-l), (21) 

by definition of the moment-generating function for U. 
This relation is the semiclassical equivalent of the 
quantum-mechanical equation (17). 

The result illustrates once again that normal-ordered 
operators correspond to correlations of the complex 
field in the semiclassical treatment. As the relations 
(17) and (21) hold for any state of the field, we see that 
the semiclassical theory may sometimes be just as 
accurate as the quantized field theory, while providing 
some valuable intuitive insight into the physics of the 
problem. 

of gravitational radiation. Another disadvantage of the 
calculation is that it is valid only for systems which are 
not gravitationally bound. Thus, the important case of 
gravitational radiation from binary stars remained un­
solved at that time. 

Later, Eddington found the radiation from a system 
by calculating the radiation reaction of the system on 
itself.4 However, like Einstein's method, this is not valid 
for gravitationally bound systems. For situations in 
which the radiation is constant, the two methods agree; 
for situations in which the radiation is time-dependent, 
the answers differ. One can show that over a time 
average of the motion the two answers are in agreement. 
Analogous results occur in the theory of electromagnetic 
radiation. 

For systems in which the velocities of the masses are 
small compared to the velocity of light, the calculation 
of Einstein has been extended to include gravitationally 

4 A. S. Eddington, Proc. Roy. Soc. (London) A102, 268 (1922). 
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The expansion of the field equations of general relativity in powers of the gravitational coupling constant 
yields conservation laws of energy, momentum, and angular momentum. From these, the loss of energy and 
angular momentum of a system due to the radiation of gravitational waves is found. Two techniques, radia­
tion reaction and flux across a large sphere, are used in these calculations and are shown to be in agreement 
over a time average. In the nonrelativistic limit, the energy and angular momentum radiation and angular dis­
tributions are expressed in terms of time derivatives of the quadrupole tensor Q#. These results are then ap­
plied to a bound system of two point masses moving in elliptical orbits. The secular decays of the semimajor 
axis and eccentricity are found as functions of time, and are integrated to specify the decay by gravitational 
radiation of such systems as functions of their initial conditions. 


